Performance of A1C for the Classification and Prediction of Diabetes
نویسندگان
چکیده
OBJECTIVE Although A1C is now recommended to diagnose diabetes, its test performance for diagnosis and prognosis is uncertain. Our objective was to assess the test performance of A1C against single and repeat glucose measurements for diagnosis of prevalent diabetes and for prediction of incident diabetes. RESEARCH DESIGN AND METHODS We conducted population-based analyses of 12,485 participants in the Atherosclerosis Risk in Communities (ARIC) study and a subpopulation of 691 participants in the Third National Health and Nutrition Examination Survey (NHANES III) with repeat test results. RESULTS Against a single fasting glucose ≥126 mg/dl, the sensitivity and specificity of A1C ≥6.5% for detection of prevalent diabetes were 47 and 98%, respectively (area under the curve 0.892). Against repeated fasting glucose (3 years apart) ≥126 mg/dl, sensitivity improved to 67% and specificity remained high (97%) (AUC 0.936). Similar results were obtained in NHANES III against repeated fasting glucose 2 weeks apart. The accuracy of A1C was consistent across age, BMI, and race groups. For individuals with fasting glucose ≥126 mg/dl and A1C ≥6.5% at baseline, the 10-year risk of diagnosed diabetes was 88% compared with 55% among those individuals with fasting glucose ≥126 mg/dl and A1C 5.7-<6.5%. CONCLUSIONS A1C performs well as a diagnostic tool when diabetes definitions that most closely resemble those used in clinical practice are used as the "gold standard." The high risk of diabetes among individuals with both elevated fasting glucose and A1C suggests a dual role for fasting glucose and A1C for prediction of diabetes.
منابع مشابه
Predictors of Pre-diabetes Hemoglobin A1C Test in Overweight Obese and Overweight Employees Based on Protection Motivation Model
Background objective: This research paper aimed at to study the factors in relevance to the performance of screening behavior in per diabetes based on the stimulus model of preserve from the overweight and obese personnel of Karaj education administration. Materials and methods: the research method of the study is descriptive-analytical one and the statistical community of survey, are including...
متن کاملA New Hybrid Method for Improving the Performance of Myocardial Infarction Prediction
Abstract Introduction: Myocardial Infarction, also known as heart attack, normally occurs due to such causes as smoking, family history, diabetes, and so on. It is recognized as one of the leading causes of death in the world. Therefore, the present study aimed to evaluate the performance of classification models in order to predict Myocardial Infarction, using a feature selection method tha...
متن کاملEarly screening of gestational diabetes mellitus using maternal hemoglobin A1C: Revision of current screening guidelines
Background: HbA1C has been a known predictor and diagnostic test for diabetes type 2. However, this test has not yet been widely studied in GDM and more importantly no cutoff point has been defined for HbA1C in GDM. We investigated the efficacy of screening during first and second trimester of pregnancy and defined appropriate cutoff points according to HbA1C and FBS for predicting maternal GDM...
متن کاملS3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization
Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...
متن کاملEarly Prediction of Gestational Diabetes Using Decision Tree and Artificial Neural Network Algorithms
Introduction: Gestational diabetes is associated with many short-term and long-term complications in mothers and newborns; hence, the detection of its risk factors can contribute to the timely diagnosis and prevention of relevant complications. The present study aimed to design and compare Gestational diabetes mellitus (GDM) prediction models using artificial intelligence algorithms. Materials ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 34 شماره
صفحات -
تاریخ انتشار 2011